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Hierarchical Models and Chaotic Spin Glasses 

A. Nihat Berker ~ and Susan R. MeKa y  1 

Renormalization-group studies in position space have led to the discovery of 
hierarchical models which are exactly solvable, exhibiting nonclassical critical 
behavior at finite temperature. Position-space renormalization-group approx- 
imations that had been widely and successfully used are in fact alternatively 
applicable as exact solutions of hierarchical models, this realizabitity guaran- 
teeing important physical requirements. For example, a hierarchized version of 
the Sierpiriski gasket is presented, corresponding to a renormalization-group 
approximation which has quantitatively yielded the multicritical phase diagrams 
of submonolayers on graphite. Hierarchical models are now being studied 
directly as a testing ground for new concepts. For example, with the 
introduction of frustration, chaotic renormalization~group trajectories were 
obtained for the first time. Thus, strong and weak correlations are randomly 
intermingled at successive length scales, and a new microscopic picture and 
mechanism for a spin glass emerges. An upper critical dimension occurs via a 
boundary crisis mechanism in cluster-hierarchical variants developed to have 
well-behaved susceptibilities. 

KEY WORDS: Hierarchical models; renormalization group; Sierpiflski 
gasket; frustration; chaos; spin glass; boundary crisis. 

A hierarchical model ~l'2) is constructed by replacing a bond, 
representing the interaction between degrees of freedom, by a graph (or 
graphs ~3)) of such bonds, and repeating this process ad infinitum (Fig. la). 
The outcome of this repeated self-embedding is a thermodynamic system 
which is exactly solvable. The solution is a renormalization-group procedure 
which, at least graphically, inverts the self-embedding construction. The 
interaction strength of the bonds of course in general changes during each 
renormalization-group step, and new types of interaction associated with the 
bond may be generated, depending upon the symmetry of the degrees of 
freedom. These models, solved exactly, can exhibit finite-temperature phase 
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Fig. 1. Construction (a) of the hierarchical model (Ref. 1) corresponding to a Migdal- 
Kadanoff recursion (decimation followed by bond-moving), and its representation (b) by a 
graphical identity. (c) The hierarchical model corresponding to the other Migdal-Kadanoff 
recursion (bond-moving followed by decimation). (d) A cluster-hierarchical model (Ref. 19). 

transitions that are nonclassical, as can be understood by the fact that they 
contain closed loops. 

The evolution, under renormalization group, of the interaction strengths 
is embodied in the recursion relations. (4) When the additive constant to the 
Hamiltonian is included, (s) these relations contain the entire statistical 
mechanics of the system under consideration. In some cases, the recursion 
relations for the approximate treatment of an ordinary lattice are 
simultaneously applicable as the exact solution of an appropriate 
hierarchical lattice. This correspondence is in fact how these hierarchical 
models were introduced (1) and has a general implication for the approximate 
treatments that possess such correspondence. Namely, these approximations 
are physically realizable, be it on rather unusual alternate systems (see 
below), and can be a priori  identified to give thermodynamically sensible 
results. (1) For example, the specific heat will always be positive. It was also 
noted, in hindsight, that most position-space renormalization-group approx- 
imations that had been widely and successfully used do indeed have 
hierarchical realizations. To give a few examples, Fig. la  corresponds to one 
of the Migdal-Kadanoff  (6) recursion relations. Its self-embedding can also be 
represented by the graphical identity of Fig. lb. Figure lc represents the 
other Migdal-Kadanoff  recursion relation. Figure ld represents a 
hierarchical model akin (but not identical, owing to a different volume 
rescaling factor, {7) as defined below) to the Niemeijer-van Leeuwen cluster 
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approximation. (s} Figure 2b represents the hierarchical model corresponding 
to the Kadanoff  bond-moving approximation, o) 

In Fig. 2a, the shaded triangles contain interactions between degrees of 
freedom at the small circles. Three right-pointing triangles form a 'unit"; 
n = 2 units are joined in parallel and form the self-embedding graph. With 
n = 4 / 3 ,  this renormalization-group transformation also applies to the 
plaquette-moving aproximation (1~ for krypton and nitrogen submonolayers 
on basal graphite. Using Potts-lattice-gas degrees of freedom, demanding 22 
different types of interaction within the shaded triangles coupling spin and 
space directions, this treatment yielded (1~ multicritical phase diagrams 
within a few percent of experimental observations. For n = 1 this model 
reduces to the Sierpifiski gasket, which was previously discussed (1D in a 
geometrical context and subsequently studied (~2) as a phase transition 
problem. In that special case, the model looks less unusual, since the n > 1 
padding has been removed. On the other hand, only a zero-temperature 
phase transition is obtained owing to the finite ramification. ~12) 

An "effective" dimensionality d can be defined (13) for hierarchical 
models: The length rescaling factor b is the number of bonds in the shortest 
path between the external vertices of the self-embedding graph (open circles 
in the figures). The volume rescaling factor b a is the total number of bonds 
in the self-embedding graph. Note that d plays no direct role in the exact 
solution of the hierarchical model. It does serve a bookkeeping role in a 
family of models and incorporates qualitative trends associated with 
ordinary dimensionality. Also, note that the spatial locations of the degrees 
of freedom have not been specified in hierarchical models, and need not be. 
On the other hand, a hierarchical model may be visualized on an ordinary 
lattice, provided one allows some zero and infinite interactions. (14) 
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Fig. 2. The hierarchized Sierpiflski gasket, with n = 2 units in parallel. In Ref. 10, n = 4/3 
was used. (b) The hierarchical model corresponding to the Kadanoff bond-moving approx- 
imation. Dashed lines represent projection operators. 
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Hierarchical models are now being studied directly as a testing ground 
for new concepts, (13'15'16) without invoking correspondence to an approx- 
imate position-space renormalization group. One such study (13'3'1s) involves 
the introduction of frustration. (17) Before describing some results, one more 
aspect of hierarchical models need be noted. Although the average coor- 
dination number is finite for a model such as in Fig. la, it is clear that sites 
at different levels of the hierarchy have different coordination numbers. 
Specifically, a smaller and smaller number of sites have a larger and larger 
coordination number. The highly coordinated sites dominate the long length 
scales. When the site-site interaction is nonzero, these sites are very suscep- 
tible to an external field, whose effect they feel channeled through their many 
neighbors. Thus, an infinite susceptibility is seen at all temperatures in the 
paramagnetic phase, c18) except literally at infinite temperature. This 
physically unreasonable characteristic does not occur in so-called cluster- 
hierarchical models involving a projection operator (e.g., Fig. ld), which 
avoid the high coordinations and exhibit well-behaved susceptibilities along 
the entire temperature range. (19) 

Accordingly, consider the frustrated cluster-hierarchical model ~15) 
defined by Fig. 3. Each site has an Ising degree of freedom s i = + 1. The full 
straight lines represent ferromagnetic interactions - f l:~i:  = Ksis : .  The wiggly 
lines, representing infinite antiferromagnetic interactions, cause 
frustration. (~3) The dashed lines represent projection operators. ~19) In the 
reentrant unit (Fig. 3a), at low temperatures, correlations across the unit are 
completely destroyed by the short-range correlations across the p cross- 
bonds. In the repressed unit (Fig. 3b), correlations across the shorter path 
are not completely destroyed but are substantially reduced by the competing 
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Fig. 3. The frustrated cluster-hierarchical model (Ref. 15). 
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longer path. These two units are taken to represend m the generically 
different microscopic geometries in a real spin glass. Respectively, p ,  and Pb 
of these units are joined in parallel to obtain the self-embedding graph 
(Fig. 3c). The built-in tendency to disorder can be increased by increasing 
either the participation of the reentrant unit (p~), or the ground state 
degeneracy of the repressed unit (m~). In either case, the effective dimen- 
sionality 

d =  ln[p,(12 + p) +pb(8 + m I + m2)]/ln 3 

is increased. (15) 
A typical set of results is depicted in Fig. 4. At an increased built-in 

tendency to disorder, the model exhibits chaotic renormalization-group 
trajectories. This has been, (13) to our knowledge, the first time that such 
trajectories are obtained, and has direct physical interpretation: As the 
system is probed at successive length scales, strong and weak correlations 
are encountered in a chaotic sequence. This implies an ordered phase with 
infinite interpenetrating subsets of noncontiguous yet strongly correlated 
spins. ~13) A most recent result ~5) in these studies has occurred with the 
introduction of cluster-hierarchical (19) models. As dimensionality is 
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Fig. 4. Renormalization-group flows for (Pb,P,  ml,  m2) = (2, 4, 6, 7) in the frustrated 
cluster-hierarchical model. The stable (unstable) fixed point and some of the stable (unstable) 
limit cycles are shown with full (dashed) lines. The dash-dotted line is the image of the lowest 
dashed line. Some of the chaotic bands are shown by the vertical segments. Arrows depict 
flows. 
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Fig. 5. Renormalization-group iterations of 2000 
initial interactions for the system of Fig. 4 with 
d = 8, that is, under intermediate-range chaotic spin- 
glass conditions. Even after 30 iterations, many 
trajectories have not escaped the chaotic band, 
which is clearly accentuated after eight iterations. 
The bottom horizontal axes have not been traced, to 
reveal those trajectories that have essentially 
reached the decoupled fixed point. 

increased,  the chaot ic  band expands and eventual ly annihilates via a 
boundary  crisis, when its edge collides with the unstable cri t ical  fixed point. 
Beyond this upper cri t ical  dimension,  the entire temperature  range eventually 
renormal izes  to the decoupled fixed point,  and therefore is paramagnet ic .  
However ,  the cont inuat ion of  the chaot ic  spin-glass phase exhibits 
considerable  intermediate-range order, as seen in Figs. 5. The 
renormal iza t ion-group i terat ions of  2000 initial interact ions are shown. After  
eight i terations,  which is a huge length rescaling (X38), many  of these trajec- 
tories have not escaped the chaotic  band. Some remain even after 30 
iterations. 
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